Matrix strategies for computing the least trimmed squares estimation of the general linear and SUR models

نویسندگان

  • Marc Hofmann
  • Erricos John Kontoghiorghes
چکیده

An algorithm for computing the exact least trimmed squares (LTS) estimator of the standard regression model has recently been proposed. The LTS algorithm is adapted to the general linear and seemingly unrelated regressions models with possible singular dispersion matrices. It searches through a regression tree to find the optimal estimates and has combinatorial complexity. The model is formulated as a generalized linear least squares problem. Efficient matrix techniques are employed to update the generalized residual sum of squares of a subset model. Specifically, the new algorithm utilizes previous computations to update a generalized QR decomposition by a single row. The sparse structure of the model is exploited. Theoretical measures of computational complexity are provided. Experimental results confirm the ability of the new algorithms to identify outlying observations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive solution of non-square fully Fuzzy linear system of equation in general form using least square method

In this paper, we propose the least-squares method for computing the positive solution of a $mtimes n$ fully fuzzy linear system (FFLS) of equations, where $m > n$, based on Kaffman's arithmetic operations on fuzzy numbers that introduced in [18]. First, we consider all elements of coefficient matrix are non-negative or non-positive. Also, we obtain 1-cut of the fuzzy number vector solution of ...

متن کامل

Application of Recursive Least Squares to Efficient Blunder Detection in Linear Models

In many geodetic applications a large number of observations are being measured to estimate the unknown parameters. The unbiasedness property of the estimated parameters is only ensured if there is no bias (e.g. systematic effect) or falsifying observations, which are also known as outliers. One of the most important steps towards obtaining a coherent analysis for the parameter estimation is th...

متن کامل

NEW MODELS AND ALGORITHMS FOR SOLUTIONS OF SINGLE-SIGNED FULLY FUZZY LR LINEAR SYSTEMS

We present a model and propose an approach to compute an approximate solution of Fully Fuzzy Linear System $(FFLS)$ of equations in which all the components of the coefficient matrix are either nonnegative or nonpositive. First, in discussing an $FFLS$ with a nonnegative coefficient matrix, we consider an equivalent $FFLS$ by using an appropriate permutation to simplify fuzzy multiplications. T...

متن کامل

Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data

Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...

متن کامل

The Trimmed Lasso: Sparsity and Robustness

Nonconvex penalty methods for sparse modeling in linear regression have been a topic of fervent interest in recent years. Herein, we study a family of nonconvex penalty functions that we call the trimmed Lasso and that offers exact control over the desired level of sparsity of estimators. We analyze its structural properties and in doing so show the following: 1. Drawing parallels between robus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2010